
Growing Languages with Metamorphic Syntax Macros

Claus Brabrand
BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540
8000 Aarhus C, Denmark
brabrand@brics.dk

Michael I. Schwartzbach
BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540
8000 Aarhus C, Denmark

mis@brics.dk

ABSTRACT
“From now on, a main goal in designing a language should
be to plan for growth.” Guy Steele: Growing a Language,
OOPSLA’98 invited talk.

We present our experiences with a syntax macro language
which we claim forms a general abstraction mechanism for
growing (domain-specific) extensions of programming lan-
guages. Our syntax macro language is designed to guarantee
type safety and termination.

A concept of metamorphisms allows the arguments of a
macro to be inductively defined in a meta level grammar
and morphed into the host language. We also show how the
metamorphisms can be made to operate simultaneously on
multiple parse trees at once. The result is a highly flexible
mechanism for growing new language constructs without re-
sorting to compile-time programming. In fact, whole new
languages can be defined at surprisingly low cost.

This work is fully implemented as part of the <bigwig>
system for defining interactive Web services, but could find
use in many other languages.

1. INTRODUCTION
A compiler with syntax macros accepts collections of gram-
matical rules that extend the syntax in which a subsequent
program may be written. They have long been advocated
as a means for extending programming languages [26, 4,
14]. Recent interest in domain-specific and customizable
languages poses the challenge of using macros to realize new
language concepts and constructs or even to grow entire new
languages [20, 2, 15].

Existing macro languages are either unsafe or not expres-
sive enough to live up to this challenge, since the syntax

allowed for macro invocations is too restrictive. Also, many
macro languages resort to compile-time meta-programming,
making them difficult to use safely.

In this paper we propose a new macro language that is
at once sufficiently expressive and based entirely on simple
declarative concepts like grammars and substitutions. Our
contributions are:

• a survey of related work, identifying and classifying
relevant properties;

• a macro language design with guaranteed type safety
and termination;

• a concept of metamorphism to allow a user defined
grammar for invocation syntax;

• a mechanism for operating simultaneously on multiple
parse trees;

• a full and efficient implementation for a syntactically
rich host language; and

• examples of creative applications.

This work is carried out in the context of the <bigwig>
project [9], but could find uses in many other host languages
for which a top-down parser can be constructed. For a given
application of our approach, knowledge of the host grammer
is required. However, no special properties of such a gram-
mar are used. In fact, it is possible to build a generator
that for a given host grammar automatically will provide a
parser that supports our notion of syntax macros.

2. RELATED WORK SURVEY
Figure 2 contains a detailed survey of the predominant macro
languages that have previously been proposed. We have
closely investigated the following eight macro languages and
their individual semantic characteristics: the C preproces-
sor, CPP [11, 19]; the Unix macro preprocessor, M4; TEX’s
built-in macro mechanism; the macro mechanism of Dylan
[18]; the C++ templates [21]; Scheme’s hygienic macros
[10, 13]; the macro mechanism of the Jakarta Tool Suite,
JTS [2]; and the Meta Syntactic Macro System, MS2 [26].
The JSE system [1] is a version of Dylan macros adapted
to Java and is not treated independently here. This survey
has led us to identify and group 32 properties that char-
acterize a macro language and which we think are relevant
for comparing such work. Our own macro language is de-
signed by explicitly considering exactly those properties; for

;Srepeat

until (

)

;

(

repeat E)

until E

repeat S ;)E(Suntil

Original Macro
definition

Expanded
programprogram

ES
E

S

E

S

Figure 1: Syntax macros—operators on parse trees.

comparison, it is included in the last column of the survey
table.

2.1 General Properties
The paramount characteristic of a macro language is whether
it operates at the lexical or syntactical level. Lexical macro
languages allow tokens to be substituted by arbitrary se-
quences of characters or tokens. These definitions may be
parameterized so that the substitution sequence contains
placeholders for the actual parameters that are themselves
just arbitrary character sequences. CPP, M4, and TEX are
well-known lexical macro languages. Conceptually, lexical
macro processing precedes parsing and is thus ignorant of
the syntax of the underlying host language. In fact, CPPand
M4 are language independent preprocessors for which there
is no concept of host language. As a direct consequence
of syntactic independence, all lexical macro languages share
many dangers that can only be avoided by clever hacks and
workarounds, which are by now folklore.

In contrast, syntactical languages operate on parse trees, as
depicted in Figure 1, which of course requires knowledge
of the host language and its grammar. Syntactical macro
languages include C++ templates , Scheme, JTS, and MS2.
The language Dylan is a hybrid that operates simutaneously
on token streams and parse trees.

Some macro languages allow explicit programming on the
parse trees that are being constructed, while others only use
pattern matching and substitution. CPPonly allows simple
conditionals, M4 offers simple arithmetic, C++ templates
performs constant folding (which together with multiple def-
initions provide a Turing-complete compile-time program-
ming language [23]), while Scheme and MS2 allow arbitrary
computations.

2.2 Syntax Properties
The syntax for defining and invoking macros varies greatly.
The main point of interest is how liberal an invocation syn-
tax is allowed. At one end of the spectrum is CPP which
requires parenthesized and comma separated actual argu-
ments, while at the other end Dylan allows an almost arbi-
trary invocation syntax following an initial identifier.

2.3 Type Properties
There are two notions of type in conjunction with syntactical
macro languages, namely result types and argument types,
both ranging over the nonterminals of the host language
grammar. These are often explicitly declared, by naming

nonterminals of some standardized host language grammar.
Using these, syntactical macro languages have the possibil-
ity of type checking definitions and invocations. Definitions
may be checked to comply with the declared nonterminal
return type of the macro, assuming that the placeholders
have the types dictated by the arguments. Invocations may
be checked to ensure that all arguments comply with their
declared types. Often the argument type information is used
to guide parsing, in which case this last check comes for free.
If both checks are performed, no parse errors can occur as a
direct consequence of macro expansion.

Only JTS and MS2 take full advantage of this possibility.
The others Mentioned fall short in various ways, for exam-
ple by not checking that the macro body conforms to the
result nonterminal. The languages also differ in how many
nonterminals from the host grammar can be used as such
types.

2.4 Definition Properties
There are many relevant properties of macro definitions.
The languages Dylan , CPP, and Scheme, allow more than
one macro to be defined with the same name; a given in-
vocation then selects the appropriate definition either by
trying them out in the order listed or by using a notion of
specificity.

Most macro languages have one-pass scope rules for macro
definitions, meaning that a macro is visible from its lexical
point of definition and onward. Only MS2 employs a two-
pass strategy, in which macro definitions are available even
before their lexical point of definition. With one-pass scope
rules, the order in which macros are defined is significant,
whereas with two-pass scope rules the macro definitions may
be viewed as a set. The latter has the nice property that
the definition order can be rearranged without affecting the
semantics. However, this is not completely true of MS2 since
its integrated compile-time programming language has one-
pass scope rules. Some of the languages allow macros to be
undefined or redefined which of course only makes sense in
the presence of one pass scope rules. Many languages permit
local macro definitions, but CPP, Dylan , and JTS have no
such concept.

There are two kinds of macro recursion; direct and indirect.
Direct recursion occurs when the body of a macro definition
contains an invocation of itself. This always causes non-
termination. Indirect recursion occurs when a self-invocation
is created during the expansion. This can either be the re-
sult of a compile-time language creating a self-invocation or
the result of the expansion being reparsed as in the pre-
scan expansion strategy (see below). Without a compile-
time programming language with side-effects to “break the
recursion”, indirect recursion also causes non-termination.
The above generalizes straightforwardly to mutual recur-
sion. Most of the languages tolerate some form of macro
recursion, only CPPand JTS completely and explicitly avoid
recursion.

An important issue is the argument structure that is allowed.
Most languages require a fixed number of arguments for each
macro. Scheme allows lists of argument, MS2 allows lists,
tuples, and optional arguments, while Dylan is the most

flexible by allowing the argument syntax to be described by
a user defined grammar.

2.5 Invocation Properties
A macro body may contain further macro invocations. The
languages are evenly split as to whether a macro body is ex-
panded eagerly at its definition or lazily at each invocation.
An eager strategy will find all errors in the macro body at
definition time, even if the macro is never invoked.

Similarly, the actual arguments may contain macro invoca-
tions; here, the languages split on using an inner or outer
expansion strategy. However, CPP, M4, and Dylan use a
more complex strategy known as argument prescan. When
a macro invocation is discovered, all arguments are parsed
and any macros inside are invoked. These expanded argu-
ments are then substituted for their placeholders in a copy of
the macro body. Finally, the entire result is rescanned, pro-
cessing any newly produced macro invocations. Note that
this strategy only makes sense for lexical macro languages.

The languages that allow a liberal invocation syntax where
the arguments are not properly delimitered sometimes face
ambiguities in deciding how to match actual to formal macro
arguments. The lexical languages, TEX and Dylan , resolve
such ambiguities by chosing the shortest possible match;
in contrast, the syntactical language MS2 employs a greedy
strategy that for each formal argument parses as much as
possible. None of the languages investigated employed back-
tracking for matching invocations with definitions.

Most syntactical languages use automatic α-conversion to
obtain hygienic macros; MS2 requires explicit renamings to
be performed by the programmer. Several languages allow
new macro definitions to be generated by macro expansions.
Only CPPand JTS guarantee termination of macro expan-
sion; the others fail either by a naive treatment of recursive
macros or by allowing arbitrary computations during expan-
sion.

2.6 Implementation Properties
Macro languages are generally designed to be transparent,
meaning that subsequent phases of the compilation need not
be aware of macro expansions. However, none apart from
Scheme seem to allow pretty printing of the unexpanded
syntax and error trailing, meaning that errors from subse-
quent phases are traced back to the unexpanded syntax.
Finally, a package concept for macros seems again only to
be considered by Scheme [25].

2.7 Other Related Work
Our macro language shares some features of a previous work
on extensible syntax [5], although that is not a macro lan-
guage. Rather, it is a framework for defining new syntax
that is represented as parse tree data structures in a tar-
get language, in which type checking and code generation
is then performed. In contrast, our new syntax is directly
translated into parse trees in a host language. Also, the host
language syntax is always available on equal footing with the
new syntax. However, the expressiveness of the extensible
syntax that is permitted in [5] is very close to the argument
syntax that we allow, although there are many technical dif-
ferences, including definition selection, parsing ambiguities,

P
r
o
p
e
r
ty

\
L
a
n
g
u
a
g
e

C
P

P
M

4
T
E
X

D
yl

a
n

C
+

+
te

m
p

la
te

s
S

ch
e

m
e

JT
S

M
S2

<
b

ig
w

ig
>

Gen.

L
e
v
e
l
o
f
o
p
e
ra

ti
o
n

le
x
ic

a
l

le
x
ic

a
l

le
x
ic

a
l

h
y
b
ri

d
sy

n
ta

c
ti

c
a
l

sy
n
ta

c
ti

c
a
l

sy
n
ta

c
ti

c
a
l

sy
n
ta

c
ti

c
a
l

s
y
n
ta

c
ti
c
a
l

L
a
n
g
u
a
g
e

d
e
p
e
n
d
e
n
t

n
o

n
o

y
e
s

y
e
s

y
e
s

y
e
s

y
e
s

y
e
s

y
e
s

P
ro

g
ra

m
m

a
b
le

c
o
n
d
it

io
n
a
ls

a
ri

th
m

e
ti

c
y
e
s

n
o

c
o
n
st

a
n
t

fo
ld

in
g

y
e
s

n
o

y
e
s

n
o

Syntax

D
e
fi
n
it

io
n

k
e
y
w

o
rd

#
d

e
fin

e
d

e
fin

e
\d

e
f

d
e

fin
e

m
a

cr
o

te
m

p
la

te
d

e
fin

e
-s

yn
ta

x
m

a
cr

o
sy

n
ta

x
sy

n
ta

x
F
o
rm

a
l
a
rg

u
m

e
n
t

d
e
f

id
N

/
A

#
1

to
#
9

?
id

:i
d
,

?
:i
d
,

?
id

<
n
t
id

>
id

n
t
id

$
$
n
t:

:
id

,
$

$
..
.:

:
id

<
n
t
id

>
,

<
id

:
n
t
id

>
F
o
rm

a
l
a
rg

u
m

e
n
t

u
se

id
$
0

to
$
9

#
1

to
#
9

?
id

id
id

id
$
id

<
id

>
In

v
o
c
a
ti

o
n

sy
n
ta

x
id

(
,

,
)

id
(

,
,

)
\
id

..
.

id
..
.

id
<

,
,

>
(
id

)
#
id

(
,

,
)

id
..
.

id
..
.

Type

A
rg

u
m

e
n
t

ty
p
e
s

d
e
c
la

re
d

N
/
A

N
/
A

N
/
A

y
e
s

y
e
s

im
p
li
c
it

ly
y
e
s

y
e
s

y
e
s

A
rg

u
m

e
n
t

n
o
n
te

rm
in

a
ls

N
/
A

N
/
A

N
/
A

7
+

to
k
e
n

id
,
ty

p
e
,
co

n
st

s-
e
x
p

6
1
5

a
ll

5
5

A
rg

u
m

e
n
t

ty
p
e
s

ch
e
ck

e
d

N
/
A

N
/
A

N
/
A

y
e
s

y
e
s

y
e
s

y
e
s

y
e
s

y
e
s

R
e
su

lt
ty

p
e
s

d
e
c
la

re
d

N
/
A

N
/
A

N
/
A

y
e
s

n
o

im
p
li
c
it

ly
y
e
s

y
e
s

y
e
s

R
e
su

lt
n
o
n
te

rm
in

a
ls

N
/
A

N
/
A

N
/
A

st
m

,
fc

a
ll
,
d
e
f

d
ec

l
s-

e
x
p

5
1
5

a
ll

5
5

R
e
su

lt
ty

p
e
s

ch
e
ck

e
d

N
/
A

N
/
A

N
/
A

n
o

N
/
A

n
o

y
e
s

y
e
s

y
e
s

Definition

M
u
lt

ip
le

d
e
fi
n
it

io
n
s

n
o

n
o

n
o

y
e
s

y
e
s

y
e
s

n
o

n
o

y
e
s

D
e
fi
n
it

io
n

se
le

c
ti

o
n

N
/
A

N
/
A

N
/
A

o
rd

e
r

li
st

e
d

sp
e
c
ifi

c
it
y

o
rd

e
r

li
st

e
d

N
/
A

N
/
A

s
p
e
c
ifi

c
it
y

D
e
fi
n
it

io
n

sc
o
p
e

o
n
e

p
a
ss

o
n
e

p
a
ss

o
n
e

p
a
ss

o
n
e

p
a
ss

o
n
e

p
a
ss

o
n
e

p
a
ss

o
n
e

p
a
ss

tw
o

p
a
ss

tw
o

p
a
s
s

U
n
d
e
fi
n
e

y
e
s

re
d
e
fi
n
e

re
d
e
fi
n
e

n
o

n
o

re
d
e
fi
n
e

n
o

N
/
A

N
/
A

L
o
c
a
l
m

a
c
ro

d
e
fi
n
it

io
n
s

n
o

y
e
s

y
e
s

n
o

y
e
s

y
e
s

y
e
s

n
o

y
e
s

D
ir

e
c
t

re
c
u
rs

io
n

n
o

y
e
s

y
e
s

y
e
s

n
o

y
e
s

n
o

n
o

r
e
je

c
te

d
In

d
ir

e
c
t

re
c
u
rs

io
n

n
o

y
e
s

y
e
s

y
e
s

y
e
s

y
e
s

N
/
A

y
e
s

N
/
A

A
rg

u
m

e
n
t

st
ru

c
tu

re
fi
x
e
d

fi
x
e
d

fi
x
e
d

g
ra

m
m

a
r

fi
x
e
d

li
st

fi
x
e
d

o
p
ti

o
n
,
li
st

,
tu

p
le

g
r
a
m

m
a
r

Invocation

B
o
d
y

e
x
p
a
n
si

o
n

la
z
y

e
a
g
e
r

la
z
y

la
z
y

la
z
y

la
z
y

e
a
g
e
r

e
a
g
e
r

e
a
g
e
r

O
rd

e
r

o
f
e
x
p
a
n
si

o
n

p
re

sc
a
n

p
re

sc
a
n

o
u
te

r
p
re

sc
a
n

N
/
A

o
u
te

r
in

n
e
r

o
u
te

r
in

n
e
r

P
a
rs

in
g

a
m

b
ig

u
it

ie
s

N
/
A

N
/
A

sh
o
rt

e
st

sh
o
rt

e
st

N
/
A

N
/
A

N
/
A

g
re

e
d
y

g
r
e
e
d
y

H
y
g
ie

n
ic

e
x
p
a
n
si

o
n

n
o

n
o

n
o

y
e
s

n
o

y
e
s

(y
e
s)

n
o

y
e
s

M
a
c
ro

s
a
s

re
su

lt
s

n
o

y
e
s

y
e
s

n
o

n
o

y
e
s

y
e
s

y
e
s

n
o

G
u
a
ra

n
te

e
d

te
rm

in
a
ti

o
n

y
e
s

n
o

n
o

n
o

n
o

n
o

y
e
s

n
o

y
e
s

Impl.

T
ra

n
sp

a
re

n
t

y
e
s

N
/
A

y
e
s

y
e
s

y
e
s

y
e
s

y
e
s

y
e
s

y
e
s

E
rr

o
r

tr
a
il
in

g
N

/
A

N
/
A

n
o

n
o

n
o

y
e
s

n
o

n
o

y
e
s

P
re

tt
y

p
ri

n
ti

n
g

n
o

n
o

n
o

n
o

n
o

y
e
s

n
o

n
o

y
e
s

P
a
ck

a
g
e

M
e
ch

a
n
is

m
n
o

n
o

n
o

n
o

n
o

y
e
s

n
o

n
o

y
e
s

Figure 2: A macro language survey.

expansion strategy, and error trailing. Also, we allow a more
general translation scheme.

3. DESIGNING A MACRO LANGUAGE
The ideal macro language would allow all nonterminals of
the host language grammar to be extended with arbitrary
new productions, defining new constructs that appear to the
programmer as if they were part of the original language.
The macro languages we have seen in the previous section
all approximate this, some better than others.

In this section we aim to come as close to this ideal as prac-
tically possible. Later, we take a further step by allowing
the programmer to define also new nonterminals. Another
goal is to obtain a safe macro language, where type checking
and termination are guaranteed. We will carefully consider
the semantic aspects identified in Figure 2 in our design.

Syntax
Our syntax macro language looks as follows:

macro : syntax <nonterm> id 〈param〉∗ ::= { body }
param : token

| <nonterm id>

A syntax macro has four constituents: a result type (which
is a nonterminal of the host grammar), an identifier naming
the macro, a parameter list specifying the invocation syntax,
and a body that must comply with the result type.

The result type declares the type of the body and thereby
the syntactic contexts in which invocations of the macro are
permitted. Adhering to Tennent’s Principle of Abstraction
[22], we allow nonterm to range over all nonterminals of the
host language grammar. Of course, the nonterminals are
from a particular standardized abstract grammar. In the
case of the <bigwig> host language, 55 nonterminals are
available.

As in MS2, a macro must start with an identifier. It is tech-
nically possible to lift this restriction [16], but it serves to
make macro invocations easier to recognize. The parameter
list determines the rest of the invocation syntax. Here, we al-
low arbitrary tokens interspersed among arguments that are
identifiers typed with nonterminals. The list ends with the
“::= ” token. The macro body enclosed in braces conforms
to the result type and references the arguments through
identifiers in angled brackets.

Simple Examples
A simplest possible macro without arguments is:

syntax <floatconst> pi ::= {
3.1415927

}

whose invocation pi is only allowed in places where a float-
const may appear. The next macro takes an argument and
executes it with 50% probability:

syntax <stm> maybe <stm S> ::= {
if (random (2)==1) <S>

}

A more interesting invocation syntax is:

syntax <stm> repeat <stm S> until (< exp E>); ::= {
{

bool first = true ;
while (first || !<E>) {

<S>
first = false ;

}
}

}

which extends the host language with a repeat construct
that looks and feels exactly like the real thing. Identifiers
such as repeat and until are even treated as keywords in
the scope of the macro definition. The semantic correctness
of course relies on α-conversion of first . Incidentally, this
is the macro used in Figure 1.

An example with multiple definitions supplies a Francophile
syntax for existing constructs:

syntax <stm> si (< exp E>) < stm S> ::= {
if (<E>) <S>

}

syntax <stm> si (< exp E>) < stm S> sinon <stm S2> ::= {
if (<E>) <S> else <S2>

}

The two definitions are both named si but have different
parameters.

Macro Packages
Using macros to enrich the host language can potentially
create a Babylonic confusion. To avoid this problem, we
have created a simple mechanism for scoping and packaging
macro definitions. A package containing macro definitions is
viewed as a set, that is, we use two pass scope rules where all
definitions are visible to each other and the order is insignifi-
cant. A dependency analysis intercepts and rejects recursive
definitions.

A package may require or extend other packages. Con-
sider a package P that contains a set of macro definitions
M , requires a package R, and extends another package E.
The definitions visible inside the bodies of macros in M are
M ∪R ∪E and those that are exported from P are M ∪E.
Thus, require is used for obtaining local macros. The
strict view that a package defines a set eliminates many po-
tential problems and confusions.

Parsing Definitions
Macro definitions are parsed in two passes yielding a set
of definitions. First, the macro headers are collected into
a structure that will later guide the parsing of invocations.
The bodies are lexed to discover macro invocations from
which a dependency graph is constructed. Second, the macro
bodies are parsed in topological order. To ensure termina-
tion, we intercept and reject cycles. The result is for each
body a parse tree that conforms to the result type and con-
tains placeholder nodes for occurrences of arguments. It is
checked that the body can be derived from the result non-
terminal when the placeholders are assumed to be derived
from the corresponding argument nonterminals. Note that
this yields an eager expansion strategy allowing parse errors
in the macro body to be reported at definition time.

Parsing Invocations
Macro invocations are detected by the occurrence of an iden-
tifier naming a macro. At this point, the parser determines
if the result type of the macro is reachable from the cur-
rent point in parsing. If not, parsing is aborted. Otherwise,
parsing is guided to this nonterminal and invocation parsing
begins. The result is a parse tree that is inserted in place of
the invocation.

Invocation parsing is conducted by interpreting the macro
parameter list, matching required tokens and collecting ac-
tual argument parse trees. When the end of the parameter
list is reached, the actual arguments are substituted into the
placeholders in a copy of the macro body. This process is
commonly referred to as macro expansion. The parsing is
greedy since an actual argument is parsed as far as possible
in the usual top-down parsing style.

However, this basic mechanism is not powerful enough to
handle multiple definitions of a macro which yields a more
flexible invocation syntax and are crucial for the metamor-
phisms presented later. For that purpose, we must interpret
a set of parameter lists. We base the definition selection on
the concept of specificity which is independent of the macro
definition order. This is done by gradually challenging each
parameter list with the input tokens. There are three cases
for a challenge:

• if a list is empty, then it always survives;

• if a list starts with a token, then it survives if it equals
the input token; and

• if a list starts with an argument <N a>, then it sur-
vives if the input token belongs to first(N) in the host
grammar.

Several parameter lists may survive the challenge. Among
those, we only keep the most specific ones. The empty list
is always eliminated unless all lists are empty. Among a
set of non-empty lists, the survivors are those whose first
parameter is maximal in the ordering p < q defined as φ(q) ⊂
φ(p), where φ(token) is the singleton {token} and φ(<N a>)
is first(N) in the host grammar. The tails of the surviving
lists are then challenged with the next input token, and so
on.

The intuition behind our notion of specificity can be sum-
marized in a few rules of thumb: 1) always prefer longer
parameter lists to shorter ones, 2) always prefer a token
to a nonterminal, 3) always prefer a narrow nonterminal
to a wider one. Rule 1) is the reason that the dangling
sinon problem for our Francophile example is solved cor-
rectly. This strategy has a far reaching generality that also
works for the metamorph rules introduced in Section 5.

For the order of expansion we have chosen the inner strat-
egy. Since our macros are terminating, the expansion order
is semantically transparent, apart from a subtle difference
with respect to α-conversion. The inner strategy is more
efficient since arguments are only parsed once.

Well-Formedness

A set of macros with the same name must be well-formed.
This means that they must all have the same result type.
Actually, this restriction could be relaxed to allow differ-
ent return types for macros with the same name by using a
contravariant specificity ordering to determine which one to
invoke. Furthermore, to guarantee that the challenge rounds
described above have a unique final winner, we impose two
requirements. First, all parameter lists must be strictly or-
dered in the lexicographical generalization of the v order
from param to param∗. Second, for all pairs of parameter
lists of the form πp1π1 and πp2π2, if φ(p1) equals φ(p2) then
p1 must equal p2.

Hygienic Macros
To achieve hygienic macros, we automatically α-convert all
identifiers inside macro bodies during expansion. Unlike
Scheme [12, 6, 8], we also α-convert free identifiers, since
they cannot be guaranteed to bind to anything sensible in
the context of an invocation. As we thus α-convert all iden-
tifiers, the macro needs only recognize all parse tree nodes
of nonterminal id ; that is, no symbol table information is re-
quired. To communicate identifiers from the invocation con-
text we encourage the macro programmer to supply those
explicitly as arguments of type id . If an unsafe free variable
is required, it must be backpinged to avoid α-conversion. It
is often necessary to use computed identifiers, as seen in
Figure 3. For that purpose, we introduce an injective and
associative binary concatenation operator “˜ ” on identifiers.
The inductive predicate α determines if an identifier will be
α-converted:

• α(‘ i) = false;

• α(i˜ j) = α(i) ∧ α(j);

• α(<i>) = false, if <i> is an argument of type id ; and

• α(i) = true, otherwise.

4. GROWING LANGUAGE CONCEPTS
Our macro language allows the host language to grow, not
simply with handy abbreviations but with new concepts and
constructs. Our host language, <bigwig> , is designed for
programming interactive Web services and has a very gen-
eral mechanism for providing concurrency control between
session threads [17, 3]. The programmer may declare labels
in the code and use temporal logic to define the set of legal
traces for the entire service. This is a bit harsh on the av-
erage programmer and consequently a good opportunity for
using macros.

Figure 3 shows a whole stack of increasingly high-level con-
cepts that are introduced on top of each other, profiting
from the possibility to define macros for all nonterminals of
the host language. Details of the <bigwig> syntax need
not be understood. The mutex macro abbreviates a com-
mon construct in the temporal logic and produces a result
of type formula. The macro region of type toplevel is
different; it introduces a new concept of regions that are
declared on equal footing with other native concepts. The
exclusive macro of type stm defines a new control struc-
ture that secures exclusive access to a previously declared
region. More advanced mechanisms are provided by the re-
source , reader , writer , and protected macros. In all,

syntax <formula> mutex (< id A> , < id B>) ::= {
forbid <A> when (is t: <A>(t) && (all s: t<s => !(s)))

}

syntax <toplevel> region <id R> ; ::= {
constraint {

label <R>˜A, <R>˜B;
mutex (<R>˜A, <R>˜B);

}
}

syntax <stm> exclusive (< id R>) < stm S> ::= {
{ wait <R>˜A;

<S>
wait <R>˜B;

}
}

syntax <toplevels> resource <id R> ; ::= {
region <R>;
constraint { ... }

}

syntax <stm> reader (< id R>) < stm S> ::= {
{ wait <R>˜enterR;

<S>
wait <R>˜exitR;

}
}

syntax <stm> writer (< id R>) < stm S> ::= {
{ wait <R>˜P;

exclusive (<R>) <S>
}

}

syntax <toplevels> protected <type T> <id I> ; ::= {
<T> <I>; resource <I>;

}

Figure 3: Concurrency control abstractions

the constructs form a stack of abstractions of height six. A
further development could have implemented other primi-
tives, such as semaphores, monitors, and fifo pipes. Thus
the host language becomes highly tailorable with very sim-
ple means.

5. METAMORPHISMS
Macro definitions specify two important aspects: the syntax
definitions characterizing the syntactic structure of invoca-
tions and the syntax transformations specifying how “new
syntax” is morphed into host language syntax.

So far, our macros can only have a finite invocation syn-
tax, taking a fixed number of arguments each of which is
described by a host grammar nonterminal. In the following
we will move beyond this limitation, focusing initially on the
syntax definition aspects.

The previously presented notion of multiple definitions allow
macros with varying arity. The following example defines an
enum macro as known from C that takes one, two, or three
identifier arguments:

syntax <decls> enum { < id X> } ; ::= {
const int <X> = 0;

}

syntax <decls> enum { < id X> , < id Y> } ; ::= {
const int <X> = 0;
const int <Y> = 1;

}

syntax <decls> enum { < id X> , < id Y> , < id Z> } ; ::= {
const int <X> = 0;
const int <Y> = 1;
const int <Z> = 2;

}

Evidently, it is not possible to define macros with arbitrary
arity and the specifications exhibit a high degree of redun-
dancy. In terms of syntax definition, the three enum defini-
tions correspond to adding three unrelated right-hand side
productions for the nonterminal decls:

decls : enum { id } ;
| enum { id , id } ;
| enum { id , id , id } ;

Scheme amends this by introducing a special ellipsis con-
struction, “... ” to specify lists of nonterminal s-expressions.
MS2 moves one step further by permitting also tuples and
optional arguments, corresponding to allowing the use of
regular expressions over the terminals and nonterminals of
the host grammar on the right-hand sides of productions.
The ubiquitous EBNF syntax is available for designating
options “?”, lists “* ” or “+”, and tuples “{ ...} ” (for group-
ing). In addition, MS2 provides a convenient variation of the
Kleene star for specifying token-separated lists of nontermi-
nals. Here, we use N⊕ as notation for one-or-more comma
separated repetitions of the nonterminal N . An enum macro
defined via this latter construction corresponds to extending
the grammar as follows:

decls : enum { id⊕ } ;

The Dylan language has taken the full step by allowing
the programmer to describe the macro invocation syntactic
structure via a user defined grammar, permitting the intro-
dution of new user defined nonterminals. This context-free
language approach is clearly more general than the regular
language approach, since it can handle balanced tree struc-
tures. The enum invocation syntax could be described by
the following grammar fragment that introduces a user de-
fined nonterminal called enums (underlined for readability):

decls : enum { id enums } ;
enums : , id enums

| ε

In Dylan , the result of parsing a user defined nonterminal
also yields a result that can be substituted into the macro
body. However, this result is an unparsed chunk of tokens
with all the associated lexical macro language pitfalls.

We want to combine this great definition flexibility with type
safety. Thus, we need some way of specifying and checking
the type of the result of parsing a user defined nonterminal.
Clearly, such nonterminals cannot exist on an equal footing
with those of the host language; a syntax macro must ul-
timately produce host syntax and thus cannot return user
defined ASTs. To this end, we associate to every user de-
fined nonterminal a host nonterminal result type from which
the resulting parse tree must be derived. Thus, the syntax
defined by the user defined nonterminals is always morphed
directly into host syntax. The specification of this morph-
ing is inductively given for each production of the grammar.
In contrast, MS2 relies on programming and computation

for specifying and transforming their regular expressions of
nonterminals into parse trees.

To distinguish clearly from the host grammar, we call the
user defined nonterminal productions typed with host non-
terminals for metamorphisms. A metamorphism is a rule
specifying how the macro syntax is morphed into host lan-
guage syntax. The syntax for macro definitions is general-
ized as follows to accommodate the metamorphisms:

macro : syntax <nonterm> id 〈param〉∗ ::= { body }
| metamorph <nonterm> id --> 〈param〉∗ ::= { body }

param : token
| <nonterm id>
| <id: nonterm id>

We have introduced two new constructs. A parameter may
now also be of the form <M: N a>, meaning that it is
named a, has an invocation syntax that is described by the
metamorph nonterminal M, and that its result has type N .
The metamorph syntax and the inductive translation into
the host language is described by the metamorph rules. To
the left of the “--> ” token is the result type and name of
the metamorph nonterminal, and to the right is a parameter
list defining the invocation syntax and a body defining the
translation into the host language. The metamorph rules
may define an arbitrary grammar. In its full generality, a
metamorph rule may produce multiple results each defined
by a separate body.

We are now ready to define the general enum macro in our
macro language. The three production rules above trans-
lates into the following three definitions:

syntax <decls> enum { < id I> < enums: decls Ds> } ; ::= {
int e = 0;
const int <I> = e++;
<Ds>

}

metamorph <decls> enums --> , < id I> < enums: decls Ds> ::= {
const int <I> = e++;
<Ds>

}

metamorph <decls> enums --> ::= {}

The first rule defines a macro enum with the metamorph
argument <enums: decls Ds> describing a piece of invo-
cation syntax that is generated by the nonterminal enums in
the metamorph grammar. However, enums parse trees are
never materialized, since they are instantly morphed into
parse trees of the nonterminal decls in the host grammar.

The body of our enum macro commences with the declara-
tion of a variable e used for enumerating all the declared
variables at runtime. This declaration is followed by the
morphing of the (first) identifier <I> into a constant integer
declaration with initialization expression e++. Then comes
<Ds> which is the decls result of metamorphing the remain-
ing identifiers to constant integer declarations.

The next two productions in the enum grammar translates
into two metamorph definitions. The first will take a comma
and an identifier followed by a metamorph argument and
morph the identifier into a constant integer declaration as

above and return this along with whatever is matched by an-
other metamorph invocation. The second metamorph defi-
nition offers a termination condition by parsing nothing and
returning the empty declarations.

For simplicity, the constant integer declarations in the bod-
ies of the first two rules are identical. This redundance can
be alleviated either by placing this constant declaration in
the body of another macro or by introducing another meta-
morphism returning the declaration at the place of the iden-
tifiers.

The next example shows how the invocation syntax of a
switch statement syntax is easily captured and desugared
into nested if statements:

syntax <stm> switch (< exp E>) { < swbody: stm S> } ::= {
{

typeof (<E>) x = <E>;
<S>

}
}

metamorph <stm> swbody -->
case <exp E>: < stms Ss> break ; < swbody: stm S> ::= {

if (x==<E>) { <Ss> } else <S>
}

metamorph <stm> swbody --> case <exp E>: < stms Ss>
break ; ::= {

if (x==<E>) { <Ss> }
}

Parsing Invocations
The strategy for parsing invocations is unchanged. The <

order is generalized appropriately by defining φ(<M: N a>)
to be first(M) in the metamorph grammar. Note that it is al-
ways possible to abbreviate part of the invocation syntax by
introducing a new metamorph nonterminal while preserving
the semantics.

Well-Formedness
As for syntax macros, the set of productions for a given
metamorph nonterminal must be well-formed. Furthermore,
to ensure termination of our greedy strategy, we prohibit
left-recursion in the metamorph grammar. Finally, we in-
clude the sanity check that each metamorph nonterminal
must derive some finite string.

Hygienic Macros
Metamorph productions do not initiate α-conversion. This
is only done on the entire body of a syntax macro, conceptu-
ally after its metamorphic arguments have been substituted.
This is seen in the enum example, where the expansion of
“enum {d,e}; ” is:

int e˜42 = 0;
const int d = e˜42++;
const int e = e˜42++;

In this resulting parse tree, the local occurrence of e is ev-
erywhere α-converted to the same e˜42 , which is necessary
to yield the proper semantics.

6. MULTIPLE RESULTS
In its full generality, a metamorph production may morph
the invocation syntax into several resulting parse trees in

the host grammar. This can be seen as a generalization of
the divert primitive from M4; however, our solution stat-
ically guarantees type safety of the combined result. The
metamorph rules and metamorph formals are extended to
cope with multiple returns and arguments:

macro : metamorph <〈nonterm〉⊕> id --> 〈param〉∗ ::=
〈{ body } 〉+

param : <id: 〈nonterm id〉⊕>

The following example illustrates in a simple way how mul-
tiple metamorph results add expressive power to our macro
language. We define a macro reserve that takes a variable
number of identifiers denoting resources and a statement.
The macro abstraction will acquire the resources in the or-
der listed, execute the statement, and release the resources
in reverse order.

syntax <stm> reserve (< id X> <res: stms Ss1, stms Ss2>)
<stm S> ::= {

{ acquire(<X>); <Ss1> <S> <Ss2> release(<X>); }
}

metamorph <stms, stms> res --> , < id X>
<res: stms Ss1, stms Ss2> ::= {

acquire(<X>); <Ss1>
}{

<Ss2> release(<X>);
}

metamorph <stms, stms> res --> ::= {}{}

With these definitions, the macro expands as follows:

acquire(db);
acquire(master);

reserve (db, master, slave) { acquire(slave);
... =⇒ ...

} release(slave);
release(master);
release(db);

Without multiple results, some transformations are impos-
sible or require contorted encodings.

7. GROWING NEW LANGUAGES
Section 4 contains examples that use macros to enrich the
host language with new concepts and constructs. A more
radical use of particularly metamorphisms is to design and
implement a completely new language at very little cost.

Our host language <bigwig> is itself a domain-specific lan-
guage designed to facilitate the implementation of interac-
tive Web services. To program a family of highly specialized
services it can be advantageous to first define what we shall
call a very domain-specific language, or VDSL.

We consider a concrete example. At the University of Aarhus,
undergraduate Computer Science students must complete
a Bachelor’s degree in one of several fields. The require-
ments that must be satisfied are surprisingly complicated.
To guide students towards this goal, they must maintain
a so-called “Bachelor’s contract” that plans their remain-
ing studies and discovers potential problems. This process
is supported by a Web service that for each student itera-
tively accepts past and future course activities, checks them
against all requirements, and diagnoses violations until a le-
gal contract is composed. This service was first written as

a straight <bigwig> application, but quickly became an-
noying to maintain. Thus it was redesigned in the form
of a VDSL, where study fields and requirements are con-
ceptualized and defined directly in pseudo natural language
style. This makes it possible for a secretary—or even the
responsible faculty member—to maintain and update the
service. Figure 4 shows an example of the input. There is
only a single macro, studies , which accepts as argument
an entire specification in the VDSL syntax, defined using 27
metamorph rules. Its result is a corresponding <bigwig>
service. Apart from the keyword require , none of the syn-
tax shown is native to <bigwig> . The file bach.wigmac is
only 400 lines and yet contains a complete implementation of
the new language, including “parser” and “code generator”.
Thus, our macro mechanism offers a rapid and inexpensive
realization of new ad-hoc languages with almost arbitrary
syntax. Error trailing and unexpanded pretty printing sup-
ports the illusion that a genuinely new language is provided.

8. IMPLEMENTATION
The work presented is fully implemented in the <bigwig>
compiler. The implementation is in Cwith extensive support
from CPPand is available from the <bigwig> project home-
page [9] in an Open Source distribution. In the following
we present two important aspects from the implementation
that achieve transparency for all other phases of the com-
piler. These are the transparent representation of macros
and the generic pretty printer responsible for communicat-
ing macro-conscious information. These aspects support the
illusion that the host language is really extended.

Transparent Representation
Consider the following macro definition:

syntax <ids> xIDy (< ids Is>) ::= {
X,<Is>,Y

}

The representation of the parse tree for the identifier list
“A,xIDy(B,C),D ” is seen in Figure 5(a). All node kinds
of the parse tree are capable of holding three explicit macro
nodes: Inv , Arg , and End.

This representation yields a perfectly balanced structure
with complete knowledge of the scope of all macro invo-
cations and arguments. It is, however, clearly not transpar-
ent for subsequent phases in the compiler. Transparency is
achieved through a weaving phase in which new pointers are
after parsing short-circuited around the macro nodes giv-
ing two ways of traversing the parse tree. Macro conscious
phases follow the paths in Figure 5(a), while macro igno-
rant phases only see the new short-circuited paths of Fig-
ure 5(b). Desugaring is not fully compatible with preserving
macro information [24] and this is the only sense in which
transparency is not completely achieved. However, explicit
desugaring is not really necessary in a compiler that sup-
ports metamorphic syntax macros since it can be handled
by the macros.

Generic Pretty Printing
Four indent directives control the pretty printing of macros:

param : 〈whitespace〉+ | \n | \+ | \-

require "bach.wigmac"

studies
course Math101

title "Mathematics 101"
2 points fall term

...
course Phys202

title "Physics 202"
2 points spring term

course Lab304
title "Lab Work 304"
1 point fall term

exclusions
Math101 <> MathA
Math102 <> MathB

prerequisites
Math101,Math102 < Math201,Math202,Math203,Math204
CS101,CS102 < CS201,CS203
Math101,CS101 < CS202
Math101 < Stat101
CS202,CS203 < CS301,CS302,CS303,CS304
Phys101,Phys102 < Phys201,Phys202,Phys203,Phys301
Phys203 < Phys302,Phys303,Lab301,Lab302,Lab303
Lab101,Lab102 < Lab201,Lab202
Lab201,Lab202 < Lab301,Lab302,Lab303,Lab304

field "CS-Math"
field courses

Math101,Math102,Math201,Math202,Stat101,CS101,
CS102,CS201,CS202,CS203,CS204,CS301,CS302,CS303,
CS304,Project

other courses
MathA,MathB,Math203,Math204,Phys101,Phys102,
Phys201,Phys202

constraints
has passed CS101,CS102
at least 2 courses among CS201,CS202,CS203
at least one of Math201,Math202
at least 2 courses among Stat101,Math202,Math203
has 4 points among Project,CS303,CS304
in total between 36 and 40 points

field "CS-Physics"
field courses

MathA,MathB,Stat101,CS101,CS102,CS201,CS202,
CS203,CS204,CS301,CS302,CS303,CS304,Project,
Phys101,Phys102,Phys201,Lab101,Lab102,Lab201,
Lab202

other courses
Phys202,Phys301,Phys302,Phys303,Phys304,Lab301,
Lab302,Lab303,Lab304,Math202,Math203,Math204

constraints
has passed CS101,CS102
at least 2 courses among CS201,CS202,CS203
has passed Phys101,Phys102
has 4 points among MathA,MathB,Math101,Math102
has 6 points among Phys201,Phys202,Lab101,Lab102,

Lab201,Lab202
in total between 38 and 40 points

Figure 4: A VDSL for Bachelor’s contracts.

1

3

5

6

4

2

Inv.

Arg. End.

End.

A D

X Y

CB

(a) Ordinary

1

3

5

6

4

2

Inv.

Arg. End.

End.

A D

X Y

CB

(b) Weaved

Figure 5: Macro representations.

Figure 6: HTML pretty print with an error message.

The macro header is augmented with whitespace, newline,
indent, and unindent directives. The pretty printer can be
instructed to print the si-sinon statement without spaces
around the conditional expression and with a newline before
the alternate branch:

syntax <stm> si (< exp E>) < stm S> \n sinon <stm S2> ...

A more sophisticated indention correctly renders the switch
control structure:

syntax <stm> switch (< exp E>) {\+\n< swbody: stm S>\-\n} ...

These extensions are purely cosmetic; they have no seman-
tics attached and are ignored in the invocation challenge
rounds.

Our implementation supports a generic nonterminal pretty
printer that together with a specific terminal pretty printer
will unparse the code with or without macro expansion.
This only depends on the choice of arrows in Figure 5(b).

Our implementation currently has three terminal pretty print-
ers for printing ascii , LaTeX, and HTML/JavaScript of
which the last is by far the most sophisticated. It inserts use-
def hyperlinks, visualizes expression types, highlights errors,
and expands individual macros at the click of a button.

Error Reporting
With our generic pretty printing strategy, error reporting
is a special case of pretty printing using a special kind of
terminal printer that only print nodes with a non-empty
error string. Consequently, error messages can be viewed
with or without macro expansion. Figure 6 shows how a
simple error is pinpointed in the unexpanded syntax. The
compiler can be instructed to dump the error trail as follows:

*** symbol errors:
*** bach.wig:175:

Identifier ‘CS501’ not declared
in macro argument ‘I’
in macro invocation ‘course_ids’ (bach.wig:175) defined in [bach.wigmac:60]
in macro argument ‘C’
in macro invocation ‘cons’ (bach.wig:175) defined in [bach.wigmac:112]
in macro argument ‘C’
in macro invocation ‘cons_list’ (bach.wig:175) defined in [bach.wigmac:126]
in macro argument ‘CN’
in macro invocation ‘fields’ (bach.wig:168) defined in [bach.wigmac:134]
in macro argument ‘A’
in macro invocation ‘studies’ (bach.wig:3) defined in [bach.wigmac:158]

which is useful when debugging macro definitions.

9. CONCLUSION AND FUTURE WORK
We have designed and implemented a safe and efficient macro
language that is sufficiently powerful to grow domain-specific
extensions of host languages or even entire new languages.

There are several avenues for future work. First, we will
take this approach even further, by defining a notion of in-
vocation constraints that restrict the possible uses of macros.
Such constraints capture some aspects of the static semantic
analysis of the language extensions that are grown. The con-
straints work exclusively on the parse tree, similarly to [7],
and thus preserve transparency. Second, we will build im-
plementations for other host languages, in particular Java.
Third, it is possible to create a parser generator that given
a host grammar builds a parser that automatically supports
metamorphic syntax macros. Most of the required tech-
niques are already present in the implementation of meta-
morphisms.

10. REFERENCES
[1] J. Bachrach and K. Playford. The Java Syntactic Extender.

In Object-Oriented Programming, Languages, and Systems
(OOPSLA), 2001.

[2] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: Tools for
implementing domain-specific languages. In Fifth
International Conference on Software Reuse, 1998.

[3] C. Brabrand. Synthesizing safety controllers for interactive
Web services. Master’s thesis, Department of Computer
Science, University of Aarhus, December 1998. Available
from http://www.brics.dk/ ∼brabrand/thesis/ .

[4] W. R. Campbell. A compiler definition facility based on the
syntactic macro. Computer Journal, 21(1):35–41, 1975.

[5] L. Cardelli, F. Matthes, and M. Abadi. Extensible syntax
with lexical scoping. SRC Research Report 121, 1994.

[6] W. Clinger and J. Rees. Macros that work. In Principles of
Programming Languages (POPL), pages 155–162, 1991.

[7] N. Damgaard, N. Klarlund, and M. Schwartzbach. Yakyak:
Parsing with logical side constraints. In Developments in
Language Theory (DLT), 1999.

[8] R. K. Dybvig, R. Hieb, and C. Bruggeman. Syntactic
abstraction in scheme. Lisp and Symbolic Computation,
5(4):83–110, 1993.

[9] C. B. et al. The <bigwig> project homepage.
http://www.brics.dk/bigwig/ .

[10] R. Kelsey, W. Clinger, and J. R. (Eds.). Revised(5) report
on the algorithmic language scheme (r5rs), 1998.

[11] B. W. Kernighan and D. M. Ritchie. The C Programming
Language. Prentice Hall, Inc., 1978.

[12] E. Kohlbecker, D. P. Friedman, M. Felleisen, and B. Duba.
Hygienic macro expansion. In Lisp and Functional
Programming, pages 151–161, 1986.

[13] E. E. Kohlbecker and M. Wand. Macro-by-example:
Deriving syntactic transformations from their
specifications. In Principles of Programming Languages
(POPL), pages 77–84. ACM, 1987.

[14] B. M. Leavenworth. Syntax macros and extended
translation. CACM, 1966.

[15] W. Maddox. Semantically-sensitive macroprocessing.
Technical report, University of California, Berkeley, 1989.
Technical Report UCB/CSD 89/545.

[16] D. Sandberg. Lithe: A language combining a flexible syntax
and classes. In Principles of Programming Languages
(POPL), pages 142–145, 1982.

[17] A. Sandholm and M. I. Schwartzbach. Distributed safety
controllers for Web services. In Fundamental Approaches to
Software Engineering, FASE’98, pages 270–284, 1998.

[18] A. Shalit. The Dylan Reference Manual.
Addison-Wesley-Longman, 1996.

[19] R. M. Stallman. The C preprocessor online documentation.
http://gcc.gnu.org/onlinedocs/cpp toc.html .

[20] G. Steele. Growing a language. Lisp and Symbolic
Computation, 1998.

[21] B. Stroustrup. The C++ Programming Language,
chapter 13. Addison Wesley, third edition, 1997.

[22] R. D. Tennent. Principles of Programming Languages.
Prentice Hall, 1981.

[23] T. L. Veldhuizen. C++ templates as partial evaluation. In
Partial Evaluation and Semantics-Based Program
Manipulation (PEPM), 1999.

[24] O. Waddell and R. K. Dybvig. Visualizing partial
evaluation. In ACM Computing Surveys Symposium on
Partial Evaluation, volume 30(3es):24-es, September 1998.

[25] O. Waddell and R. K. Dybvig. Extending the scope of
syntactic abstraction. In Principles of Programming
Languages (POPL), pages 203–213, 1999.

[26] D. Weise and R. F. Crew. Programmable syntax macros. In
Programming Language Design and Implementation
(PLDI), pages 156–165, 1993.

